extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic5)⋊1C22 = D20.1D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5):1C2^2 | 320,373 |
(C4×Dic5)⋊2C22 = D20⋊1D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 40 | 8+ | (C4xDic5):2C2^2 | 320,374 |
(C4×Dic5)⋊3C22 = C42⋊D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5):3C2^2 | 320,448 |
(C4×Dic5)⋊4C22 = C23.20D20 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5):4C2^2 | 320,766 |
(C4×Dic5)⋊5C22 = D20⋊18D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 40 | 8+ | (C4xDic5):5C2^2 | 320,825 |
(C4×Dic5)⋊6C22 = D20.39D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8+ | (C4xDic5):6C2^2 | 320,829 |
(C4×Dic5)⋊7C22 = (D4×C10)⋊21C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5):7C2^2 | 320,863 |
(C4×Dic5)⋊8C22 = 2+ 1+4⋊D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 40 | 8+ | (C4xDic5):8C2^2 | 320,868 |
(C4×Dic5)⋊9C22 = 2+ 1+4.D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5):9C2^2 | 320,869 |
(C4×Dic5)⋊10C22 = C42⋊7D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):10C2^2 | 320,1193 |
(C4×Dic5)⋊11C22 = C42⋊11D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):11C2^2 | 320,1217 |
(C4×Dic5)⋊12C22 = C24.56D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):12C2^2 | 320,1258 |
(C4×Dic5)⋊13C22 = C24.32D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):13C2^2 | 320,1259 |
(C4×Dic5)⋊14C22 = C24⋊4D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):14C2^2 | 320,1262 |
(C4×Dic5)⋊15C22 = C24.33D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):15C2^2 | 320,1263 |
(C4×Dic5)⋊16C22 = C24.34D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):16C2^2 | 320,1264 |
(C4×Dic5)⋊17C22 = C24.35D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):17C2^2 | 320,1265 |
(C4×Dic5)⋊18C22 = C24⋊5D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):18C2^2 | 320,1266 |
(C4×Dic5)⋊19C22 = C24.36D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):19C2^2 | 320,1267 |
(C4×Dic5)⋊20C22 = C4⋊C4⋊21D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):20C2^2 | 320,1278 |
(C4×Dic5)⋊21C22 = C10.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):21C2^2 | 320,1279 |
(C4×Dic5)⋊22C22 = D20⋊19D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):22C2^2 | 320,1281 |
(C4×Dic5)⋊23C22 = D20⋊20D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):23C2^2 | 320,1284 |
(C4×Dic5)⋊24C22 = C10.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):24C2^2 | 320,1285 |
(C4×Dic5)⋊25C22 = C10.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):25C2^2 | 320,1289 |
(C4×Dic5)⋊26C22 = C10.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):26C2^2 | 320,1292 |
(C4×Dic5)⋊27C22 = C4⋊C4⋊26D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):27C2^2 | 320,1299 |
(C4×Dic5)⋊28C22 = D20⋊21D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):28C2^2 | 320,1302 |
(C4×Dic5)⋊29C22 = C10.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):29C2^2 | 320,1309 |
(C4×Dic5)⋊30C22 = C10.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):30C2^2 | 320,1316 |
(C4×Dic5)⋊31C22 = C10.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):31C2^2 | 320,1326 |
(C4×Dic5)⋊32C22 = C4⋊C4⋊28D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):32C2^2 | 320,1328 |
(C4×Dic5)⋊33C22 = C10.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):33C2^2 | 320,1329 |
(C4×Dic5)⋊34C22 = C10.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):34C2^2 | 320,1338 |
(C4×Dic5)⋊35C22 = C42⋊18D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):35C2^2 | 320,1346 |
(C4×Dic5)⋊36C22 = C42⋊20D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):36C2^2 | 320,1350 |
(C4×Dic5)⋊37C22 = C42⋊22D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):37C2^2 | 320,1355 |
(C4×Dic5)⋊38C22 = C42⋊23D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):38C2^2 | 320,1376 |
(C4×Dic5)⋊39C22 = C42⋊26D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):39C2^2 | 320,1387 |
(C4×Dic5)⋊40C22 = C24.38D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):40C2^2 | 320,1470 |
(C4×Dic5)⋊41C22 = D4×C5⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):41C2^2 | 320,1473 |
(C4×Dic5)⋊42C22 = C24.41D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):42C2^2 | 320,1477 |
(C4×Dic5)⋊43C22 = C24.42D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):43C2^2 | 320,1478 |
(C4×Dic5)⋊44C22 = C10.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):44C2^2 | 320,1501 |
(C4×Dic5)⋊45C22 = C10.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):45C2^2 | 320,1502 |
(C4×Dic5)⋊46C22 = C24.24D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):46C2^2 | 320,1158 |
(C4×Dic5)⋊47C22 = C24.27D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):47C2^2 | 320,1162 |
(C4×Dic5)⋊48C22 = C24.30D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):48C2^2 | 320,1166 |
(C4×Dic5)⋊49C22 = C24.31D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):49C2^2 | 320,1167 |
(C4×Dic5)⋊50C22 = C42⋊10D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):50C2^2 | 320,1199 |
(C4×Dic5)⋊51C22 = C42⋊12D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):51C2^2 | 320,1219 |
(C4×Dic5)⋊52C22 = C42⋊16D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):52C2^2 | 320,1228 |
(C4×Dic5)⋊53C22 = C42⋊17D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):53C2^2 | 320,1232 |
(C4×Dic5)⋊54C22 = C10.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):54C2^2 | 320,1282 |
(C4×Dic5)⋊55C22 = C10.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):55C2^2 | 320,1330 |
(C4×Dic5)⋊56C22 = C10.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):56C2^2 | 320,1331 |
(C4×Dic5)⋊57C22 = C42⋊21D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):57C2^2 | 320,1351 |
(C4×Dic5)⋊58C22 = C42⋊24D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):58C2^2 | 320,1377 |
(C4×Dic5)⋊59C22 = C24.72D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):59C2^2 | 320,1463 |
(C4×Dic5)⋊60C22 = (C2×C20)⋊15D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):60C2^2 | 320,1500 |
(C4×Dic5)⋊61C22 = D5×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 40 | 4 | (C4xDic5):61C2^2 | 320,447 |
(C4×Dic5)⋊62C22 = C2×D20⋊7C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):62C2^2 | 320,765 |
(C4×Dic5)⋊63C22 = C2×D4⋊2Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):63C2^2 | 320,862 |
(C4×Dic5)⋊64C22 = C2×D20⋊8C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):64C2^2 | 320,1175 |
(C4×Dic5)⋊65C22 = D5×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):65C2^2 | 320,1386 |
(C4×Dic5)⋊66C22 = C2×D4×Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):66C2^2 | 320,1467 |
(C4×Dic5)⋊67C22 = C2×C20.17D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):67C2^2 | 320,1469 |
(C4×Dic5)⋊68C22 = C2×C20⋊D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):68C2^2 | 320,1475 |
(C4×Dic5)⋊69C22 = C2×C20.23D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):69C2^2 | 320,1486 |
(C4×Dic5)⋊70C22 = C2×C42⋊D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):70C2^2 | 320,1144 |
(C4×Dic5)⋊71C22 = C2×C23.11D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):71C2^2 | 320,1152 |
(C4×Dic5)⋊72C22 = C2×C23.D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):72C2^2 | 320,1154 |
(C4×Dic5)⋊73C22 = C2×Dic5⋊4D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):73C2^2 | 320,1157 |
(C4×Dic5)⋊74C22 = C2×Dic5.5D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):74C2^2 | 320,1163 |
(C4×Dic5)⋊75C22 = C2×C4⋊C4⋊7D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):75C2^2 | 320,1174 |
(C4×Dic5)⋊76C22 = C2×C4⋊C4⋊D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):76C2^2 | 320,1184 |
(C4×Dic5)⋊77C22 = D5×C42⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):77C2^2 | 320,1192 |
(C4×Dic5)⋊78C22 = C4×D4×D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):78C2^2 | 320,1216 |
(C4×Dic5)⋊79C22 = D5×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):79C2^2 | 320,1345 |
(C4×Dic5)⋊80C22 = D5×C42⋊2C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):80C2^2 | 320,1375 |
(C4×Dic5)⋊81C22 = C2×C23.21D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):81C2^2 | 320,1458 |
(C4×Dic5)⋊82C22 = C2×C4×C5⋊D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5):82C2^2 | 320,1460 |
(C4×Dic5)⋊83C22 = D5×C2×C42 | φ: trivial image | 160 | | (C4xDic5):83C2^2 | 320,1143 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic5).1C22 = C10.C4≀C2 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).1C2^2 | 320,208 |
(C4×Dic5).2C22 = Dic5.D8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).2C2^2 | 320,211 |
(C4×Dic5).3C22 = (C2×D4).F5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).3C2^2 | 320,259 |
(C4×Dic5).4C22 = Dic5.SD16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).4C2^2 | 320,263 |
(C4×Dic5).5C22 = (C2×Q8).F5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).5C2^2 | 320,265 |
(C4×Dic5).6C22 = Dic5.Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).6C2^2 | 320,269 |
(C4×Dic5).7C22 = D20.4D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5).7C2^2 | 320,379 |
(C4×Dic5).8C22 = D20.5D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8+ | (C4xDic5).8C2^2 | 320,380 |
(C4×Dic5).9C22 = D4.D5⋊5C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).9C2^2 | 320,384 |
(C4×Dic5).10C22 = Dic5.14D8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).10C2^2 | 320,386 |
(C4×Dic5).11C22 = D4⋊Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).11C2^2 | 320,388 |
(C4×Dic5).12C22 = Dic10⋊2D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).12C2^2 | 320,389 |
(C4×Dic5).13C22 = D4.Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).13C2^2 | 320,390 |
(C4×Dic5).14C22 = C4⋊C4.D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).14C2^2 | 320,391 |
(C4×Dic5).15C22 = C20⋊Q8⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).15C2^2 | 320,392 |
(C4×Dic5).16C22 = D4.2Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).16C2^2 | 320,393 |
(C4×Dic5).17C22 = Dic10.D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).17C2^2 | 320,394 |
(C4×Dic5).18C22 = D4⋊D5⋊6C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).18C2^2 | 320,412 |
(C4×Dic5).19C22 = D20⋊3D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).19C2^2 | 320,413 |
(C4×Dic5).20C22 = D20.D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).20C2^2 | 320,414 |
(C4×Dic5).21C22 = C5⋊Q16⋊5C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).21C2^2 | 320,416 |
(C4×Dic5).22C22 = Q8⋊Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).22C2^2 | 320,418 |
(C4×Dic5).23C22 = Dic5⋊Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).23C2^2 | 320,420 |
(C4×Dic5).24C22 = Dic5.9Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).24C2^2 | 320,421 |
(C4×Dic5).25C22 = Q8⋊C4⋊D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).25C2^2 | 320,422 |
(C4×Dic5).26C22 = Q8.Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).26C2^2 | 320,423 |
(C4×Dic5).27C22 = C40⋊8C4.C2 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).27C2^2 | 320,424 |
(C4×Dic5).28C22 = Dic10.11D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).28C2^2 | 320,425 |
(C4×Dic5).29C22 = Q8.2Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).29C2^2 | 320,426 |
(C4×Dic5).30C22 = Q8⋊D5⋊6C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).30C2^2 | 320,444 |
(C4×Dic5).31C22 = Dic5⋊SD16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).31C2^2 | 320,445 |
(C4×Dic5).32C22 = D20.12D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).32C2^2 | 320,446 |
(C4×Dic5).33C22 = Dic20⋊15C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).33C2^2 | 320,480 |
(C4×Dic5).34C22 = Dic10⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).34C2^2 | 320,481 |
(C4×Dic5).35C22 = C40⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).35C2^2 | 320,483 |
(C4×Dic5).36C22 = Dic10.Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).36C2^2 | 320,484 |
(C4×Dic5).37C22 = D40⋊15C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).37C2^2 | 320,496 |
(C4×Dic5).38C22 = D20⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).38C2^2 | 320,497 |
(C4×Dic5).39C22 = D20.Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).39C2^2 | 320,498 |
(C4×Dic5).40C22 = Dic10⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).40C2^2 | 320,502 |
(C4×Dic5).41C22 = C40⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).41C2^2 | 320,503 |
(C4×Dic5).42C22 = Dic10.2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).42C2^2 | 320,504 |
(C4×Dic5).43C22 = C40⋊21(C2×C4) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).43C2^2 | 320,516 |
(C4×Dic5).44C22 = D20⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).44C2^2 | 320,517 |
(C4×Dic5).45C22 = D20.2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).45C2^2 | 320,518 |
(C4×Dic5).46C22 = D40⋊16C4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).46C2^2 | 320,521 |
(C4×Dic5).47C22 = C40.50D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).47C2^2 | 320,772 |
(C4×Dic5).48C22 = Dic5⋊D8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).48C2^2 | 320,777 |
(C4×Dic5).49C22 = D8⋊Dic5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).49C2^2 | 320,779 |
(C4×Dic5).50C22 = (C2×D8).D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).50C2^2 | 320,780 |
(C4×Dic5).51C22 = C40⋊11D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).51C2^2 | 320,781 |
(C4×Dic5).52C22 = Dic5⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).52C2^2 | 320,789 |
(C4×Dic5).53C22 = Dic5⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).53C2^2 | 320,790 |
(C4×Dic5).54C22 = SD16⋊Dic5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).54C2^2 | 320,791 |
(C4×Dic5).55C22 = (C5×D4).D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).55C2^2 | 320,792 |
(C4×Dic5).56C22 = (C5×Q8).D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).56C2^2 | 320,793 |
(C4×Dic5).57C22 = C40.31D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).57C2^2 | 320,794 |
(C4×Dic5).58C22 = C40⋊9D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).58C2^2 | 320,803 |
(C4×Dic5).59C22 = Dic5⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).59C2^2 | 320,809 |
(C4×Dic5).60C22 = Q16⋊Dic5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).60C2^2 | 320,811 |
(C4×Dic5).61C22 = (C2×Q16)⋊D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).61C2^2 | 320,812 |
(C4×Dic5).62C22 = C40.37D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).62C2^2 | 320,817 |
(C4×Dic5).63C22 = D8⋊4Dic5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).63C2^2 | 320,824 |
(C4×Dic5).64C22 = D20.38D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5).64C2^2 | 320,828 |
(C4×Dic5).65C22 = D20.40D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5).65C2^2 | 320,832 |
(C4×Dic5).66C22 = 2- 1+4⋊2D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8+ | (C4xDic5).66C2^2 | 320,872 |
(C4×Dic5).67C22 = 2- 1+4.2D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5).67C2^2 | 320,873 |
(C4×Dic5).68C22 = D10⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).68C2^2 | 320,1042 |
(C4×Dic5).69C22 = C5⋊C8⋊7D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).69C2^2 | 320,1111 |
(C4×Dic5).70C22 = C10.12- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).70C2^2 | 320,1172 |
(C4×Dic5).71C22 = C10.82+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).71C2^2 | 320,1176 |
(C4×Dic5).72C22 = C10.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).72C2^2 | 320,1179 |
(C4×Dic5).73C22 = C10.52- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).73C2^2 | 320,1185 |
(C4×Dic5).74C22 = C10.112+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).74C2^2 | 320,1186 |
(C4×Dic5).75C22 = C42.87D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).75C2^2 | 320,1188 |
(C4×Dic5).76C22 = C42.90D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).76C2^2 | 320,1191 |
(C4×Dic5).77C22 = C42.94D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).77C2^2 | 320,1201 |
(C4×Dic5).78C22 = C42.95D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).78C2^2 | 320,1202 |
(C4×Dic5).79C22 = D4×Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).79C2^2 | 320,1209 |
(C4×Dic5).80C22 = D4⋊5Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).80C2^2 | 320,1211 |
(C4×Dic5).81C22 = C42.106D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).81C2^2 | 320,1214 |
(C4×Dic5).82C22 = D4⋊6Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).82C2^2 | 320,1215 |
(C4×Dic5).83C22 = Dic10⋊24D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).83C2^2 | 320,1225 |
(C4×Dic5).84C22 = C42.114D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).84C2^2 | 320,1231 |
(C4×Dic5).85C22 = C42.115D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).85C2^2 | 320,1233 |
(C4×Dic5).86C22 = C42.116D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).86C2^2 | 320,1234 |
(C4×Dic5).87C22 = Q8×Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).87C2^2 | 320,1238 |
(C4×Dic5).88C22 = Dic10⋊10Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).88C2^2 | 320,1239 |
(C4×Dic5).89C22 = C42.122D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).89C2^2 | 320,1240 |
(C4×Dic5).90C22 = Q8⋊5Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).90C2^2 | 320,1241 |
(C4×Dic5).91C22 = Q8⋊6Dic10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).91C2^2 | 320,1242 |
(C4×Dic5).92C22 = C42.125D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).92C2^2 | 320,1244 |
(C4×Dic5).93C22 = C42.126D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).93C2^2 | 320,1246 |
(C4×Dic5).94C22 = C42.133D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).94C2^2 | 320,1254 |
(C4×Dic5).95C22 = C42.134D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).95C2^2 | 320,1255 |
(C4×Dic5).96C22 = C42.136D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).96C2^2 | 320,1257 |
(C4×Dic5).97C22 = Dic10⋊19D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).97C2^2 | 320,1270 |
(C4×Dic5).98C22 = Dic10⋊20D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).98C2^2 | 320,1271 |
(C4×Dic5).99C22 = C4⋊C4.178D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).99C2^2 | 320,1272 |
(C4×Dic5).100C22 = C10.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).100C2^2 | 320,1273 |
(C4×Dic5).101C22 = C10.352+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).101C2^2 | 320,1274 |
(C4×Dic5).102C22 = C10.362+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).102C2^2 | 320,1275 |
(C4×Dic5).103C22 = C10.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).103C2^2 | 320,1283 |
(C4×Dic5).104C22 = C10.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).104C2^2 | 320,1286 |
(C4×Dic5).105C22 = C10.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).105C2^2 | 320,1288 |
(C4×Dic5).106C22 = C10.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).106C2^2 | 320,1290 |
(C4×Dic5).107C22 = C10.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).107C2^2 | 320,1291 |
(C4×Dic5).108C22 = C10.742- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).108C2^2 | 320,1293 |
(C4×Dic5).109C22 = C10.502+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).109C2^2 | 320,1295 |
(C4×Dic5).110C22 = C22⋊Q8⋊25D5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).110C2^2 | 320,1296 |
(C4×Dic5).111C22 = C10.152- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).111C2^2 | 320,1297 |
(C4×Dic5).112C22 = C10.162- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).112C2^2 | 320,1300 |
(C4×Dic5).113C22 = D20⋊22D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).113C2^2 | 320,1303 |
(C4×Dic5).114C22 = Dic10⋊21D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).114C2^2 | 320,1304 |
(C4×Dic5).115C22 = Dic10⋊22D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).115C2^2 | 320,1305 |
(C4×Dic5).116C22 = C10.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).116C2^2 | 320,1307 |
(C4×Dic5).117C22 = C10.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).117C2^2 | 320,1308 |
(C4×Dic5).118C22 = C10.202- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).118C2^2 | 320,1310 |
(C4×Dic5).119C22 = C10.212- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).119C2^2 | 320,1311 |
(C4×Dic5).120C22 = C10.222- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).120C2^2 | 320,1312 |
(C4×Dic5).121C22 = C10.232- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).121C2^2 | 320,1313 |
(C4×Dic5).122C22 = C10.772- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).122C2^2 | 320,1314 |
(C4×Dic5).123C22 = C10.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).123C2^2 | 320,1315 |
(C4×Dic5).124C22 = C10.572+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).124C2^2 | 320,1317 |
(C4×Dic5).125C22 = C10.582+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).125C2^2 | 320,1318 |
(C4×Dic5).126C22 = C10.262- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).126C2^2 | 320,1319 |
(C4×Dic5).127C22 = C10.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).127C2^2 | 320,1320 |
(C4×Dic5).128C22 = C4⋊C4.197D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).128C2^2 | 320,1321 |
(C4×Dic5).129C22 = C10.802- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).129C2^2 | 320,1322 |
(C4×Dic5).130C22 = C10.812- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).130C2^2 | 320,1323 |
(C4×Dic5).131C22 = C10.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).131C2^2 | 320,1327 |
(C4×Dic5).132C22 = C10.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).132C2^2 | 320,1332 |
(C4×Dic5).133C22 = C10.842- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).133C2^2 | 320,1334 |
(C4×Dic5).134C22 = C10.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).134C2^2 | 320,1335 |
(C4×Dic5).135C22 = C10.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).135C2^2 | 320,1336 |
(C4×Dic5).136C22 = C10.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).136C2^2 | 320,1337 |
(C4×Dic5).137C22 = C10.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).137C2^2 | 320,1339 |
(C4×Dic5).138C22 = C42.138D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).138C2^2 | 320,1342 |
(C4×Dic5).139C22 = C42.139D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).139C2^2 | 320,1343 |
(C4×Dic5).140C22 = C42.140D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).140C2^2 | 320,1344 |
(C4×Dic5).141C22 = C42.141D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).141C2^2 | 320,1347 |
(C4×Dic5).142C22 = C42.234D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).142C2^2 | 320,1352 |
(C4×Dic5).143C22 = C42.143D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).143C2^2 | 320,1353 |
(C4×Dic5).144C22 = C42.144D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).144C2^2 | 320,1354 |
(C4×Dic5).145C22 = Dic10⋊7Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).145C2^2 | 320,1357 |
(C4×Dic5).146C22 = C42.147D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).146C2^2 | 320,1358 |
(C4×Dic5).147C22 = C42.236D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).147C2^2 | 320,1360 |
(C4×Dic5).148C22 = C42.148D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).148C2^2 | 320,1361 |
(C4×Dic5).149C22 = D20⋊7Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).149C2^2 | 320,1362 |
(C4×Dic5).150C22 = C42.237D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).150C2^2 | 320,1363 |
(C4×Dic5).151C22 = C42.150D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).151C2^2 | 320,1364 |
(C4×Dic5).152C22 = C42.152D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).152C2^2 | 320,1366 |
(C4×Dic5).153C22 = C42.153D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).153C2^2 | 320,1367 |
(C4×Dic5).154C22 = C42.155D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).154C2^2 | 320,1369 |
(C4×Dic5).155C22 = C42.156D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).155C2^2 | 320,1370 |
(C4×Dic5).156C22 = C42.157D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).156C2^2 | 320,1371 |
(C4×Dic5).157C22 = C42.160D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).157C2^2 | 320,1374 |
(C4×Dic5).158C22 = C42.189D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).158C2^2 | 320,1378 |
(C4×Dic5).159C22 = C42.161D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).159C2^2 | 320,1379 |
(C4×Dic5).160C22 = C42.163D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).160C2^2 | 320,1381 |
(C4×Dic5).161C22 = C42.165D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).161C2^2 | 320,1384 |
(C4×Dic5).162C22 = C42.166D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).162C2^2 | 320,1385 |
(C4×Dic5).163C22 = Dic10⋊11D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).163C2^2 | 320,1390 |
(C4×Dic5).164C22 = C42.168D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).164C2^2 | 320,1391 |
(C4×Dic5).165C22 = Dic10⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).165C2^2 | 320,1393 |
(C4×Dic5).166C22 = Dic10⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).166C2^2 | 320,1394 |
(C4×Dic5).167C22 = C42.171D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).167C2^2 | 320,1396 |
(C4×Dic5).168C22 = D20⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).168C2^2 | 320,1399 |
(C4×Dic5).169C22 = C42.241D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).169C2^2 | 320,1400 |
(C4×Dic5).170C22 = C42.174D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).170C2^2 | 320,1401 |
(C4×Dic5).171C22 = D20⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).171C2^2 | 320,1402 |
(C4×Dic5).172C22 = C42.176D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).172C2^2 | 320,1403 |
(C4×Dic5).173C22 = C42.177D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).173C2^2 | 320,1404 |
(C4×Dic5).174C22 = C42.178D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).174C2^2 | 320,1405 |
(C4×Dic5).175C22 = C42.179D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).175C2^2 | 320,1406 |
(C4×Dic5).176C22 = C42.180D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).176C2^2 | 320,1407 |
(C4×Dic5).177C22 = C10.422- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).177C2^2 | 320,1484 |
(C4×Dic5).178C22 = Q8×C5⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).178C2^2 | 320,1487 |
(C4×Dic5).179C22 = C10.442- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).179C2^2 | 320,1488 |
(C4×Dic5).180C22 = C10.452- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).180C2^2 | 320,1489 |
(C4×Dic5).181C22 = C10.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).181C2^2 | 320,1496 |
(C4×Dic5).182C22 = C10.1052- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).182C2^2 | 320,1497 |
(C4×Dic5).183C22 = C10.1062- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).183C2^2 | 320,1499 |
(C4×Dic5).184C22 = C10.1072- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).184C2^2 | 320,1503 |
(C4×Dic5).185C22 = C10.1482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).185C2^2 | 320,1506 |
(C4×Dic5).186C22 = D20⋊C8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).186C2^2 | 320,209 |
(C4×Dic5).187C22 = Dic10⋊1C8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).187C2^2 | 320,210 |
(C4×Dic5).188C22 = Dic5.23D8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).188C2^2 | 320,262 |
(C4×Dic5).189C22 = Dic5.12Q16 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).189C2^2 | 320,268 |
(C4×Dic5).190C22 = D20⋊2C8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).190C2^2 | 320,1040 |
(C4×Dic5).191C22 = Dic10⋊C8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).191C2^2 | 320,1041 |
(C4×Dic5).192C22 = C20⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).192C2^2 | 320,1043 |
(C4×Dic5).193C22 = C20.M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).193C2^2 | 320,1047 |
(C4×Dic5).194C22 = D4×C5⋊C8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).194C2^2 | 320,1110 |
(C4×Dic5).195C22 = C20⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).195C2^2 | 320,1112 |
(C4×Dic5).196C22 = Q8×C5⋊C8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).196C2^2 | 320,1124 |
(C4×Dic5).197C22 = C20.6M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).197C2^2 | 320,1126 |
(C4×Dic5).198C22 = C40⋊11Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).198C2^2 | 320,306 |
(C4×Dic5).199C22 = C42.243D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).199C2^2 | 320,317 |
(C4×Dic5).200C22 = C40⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).200C2^2 | 320,328 |
(C4×Dic5).201C22 = C42.185D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).201C2^2 | 320,336 |
(C4×Dic5).202C22 = D10⋊4M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).202C2^2 | 320,355 |
(C4×Dic5).203C22 = C5⋊2C8⋊26D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).203C2^2 | 320,357 |
(C4×Dic5).204C22 = C42.198D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).204C2^2 | 320,458 |
(C4×Dic5).205C22 = C42.30D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).205C2^2 | 320,466 |
(C4×Dic5).206C22 = C20.65(C4⋊C4) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).206C2^2 | 320,729 |
(C4×Dic5).207C22 = C40⋊32D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).207C2^2 | 320,738 |
(C4×Dic5).208C22 = C20.51(C4⋊C4) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).208C2^2 | 320,746 |
(C4×Dic5).209C22 = C40⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).209C2^2 | 320,754 |
(C4×Dic5).210C22 = C42.274D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).210C2^2 | 320,1142 |
(C4×Dic5).211C22 = C42.277D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).211C2^2 | 320,1151 |
(C4×Dic5).212C22 = C10.102+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).212C2^2 | 320,1183 |
(C4×Dic5).213C22 = C10.62- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).213C2^2 | 320,1187 |
(C4×Dic5).214C22 = C42.89D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).214C2^2 | 320,1190 |
(C4×Dic5).215C22 = C42.91D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).215C2^2 | 320,1195 |
(C4×Dic5).216C22 = C42.93D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).216C2^2 | 320,1200 |
(C4×Dic5).217C22 = C42.96D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).217C2^2 | 320,1203 |
(C4×Dic5).218C22 = C42.97D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).218C2^2 | 320,1204 |
(C4×Dic5).219C22 = C42.98D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).219C2^2 | 320,1205 |
(C4×Dic5).220C22 = C42.99D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).220C2^2 | 320,1206 |
(C4×Dic5).221C22 = C42.104D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).221C2^2 | 320,1212 |
(C4×Dic5).222C22 = C42.105D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).222C2^2 | 320,1213 |
(C4×Dic5).223C22 = C42.108D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).223C2^2 | 320,1218 |
(C4×Dic5).224C22 = Dic10⋊23D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).224C2^2 | 320,1224 |
(C4×Dic5).225C22 = C42.113D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).225C2^2 | 320,1230 |
(C4×Dic5).226C22 = C42.117D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).226C2^2 | 320,1235 |
(C4×Dic5).227C22 = C42.118D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).227C2^2 | 320,1236 |
(C4×Dic5).228C22 = C42.119D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).228C2^2 | 320,1237 |
(C4×Dic5).229C22 = C42.132D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).229C2^2 | 320,1253 |
(C4×Dic5).230C22 = C42.135D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).230C2^2 | 320,1256 |
(C4×Dic5).231C22 = C10.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).231C2^2 | 320,1287 |
(C4×Dic5).232C22 = C10.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).232C2^2 | 320,1333 |
(C4×Dic5).233C22 = C42.137D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).233C2^2 | 320,1341 |
(C4×Dic5).234C22 = Dic10⋊10D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).234C2^2 | 320,1349 |
(C4×Dic5).235C22 = C42.151D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).235C2^2 | 320,1365 |
(C4×Dic5).236C22 = C42.154D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).236C2^2 | 320,1368 |
(C4×Dic5).237C22 = C42.159D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).237C2^2 | 320,1373 |
(C4×Dic5).238C22 = C42.162D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).238C2^2 | 320,1380 |
(C4×Dic5).239C22 = C42.164D10 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).239C2^2 | 320,1382 |
(C4×Dic5).240C22 = C5⋊C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).240C2^2 | 320,1031 |
(C4×Dic5).241C22 = D10⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).241C2^2 | 320,1032 |
(C4×Dic5).242C22 = C20⋊C8⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).242C2^2 | 320,1034 |
(C4×Dic5).243C22 = C23.(C2×F5) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).243C2^2 | 320,1035 |
(C4×Dic5).244C22 = C4⋊C4.7F5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).244C2^2 | 320,1044 |
(C4×Dic5).245C22 = C4⋊C4.9F5 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).245C2^2 | 320,1046 |
(C4×Dic5).246C22 = Dic5.C42 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).246C2^2 | 320,1029 |
(C4×Dic5).247C22 = C5⋊C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).247C2^2 | 320,1030 |
(C4×Dic5).248C22 = Dic5⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).248C2^2 | 320,1033 |
(C4×Dic5).249C22 = D10.C42 | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).249C2^2 | 320,1039 |
(C4×Dic5).250C22 = Dic5.M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).250C2^2 | 320,1045 |
(C4×Dic5).251C22 = Dic5⋊4D8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).251C2^2 | 320,383 |
(C4×Dic5).252C22 = Dic5⋊6SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).252C2^2 | 320,385 |
(C4×Dic5).253C22 = Dic5.5D8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).253C2^2 | 320,387 |
(C4×Dic5).254C22 = (C8×Dic5)⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).254C2^2 | 320,395 |
(C4×Dic5).255C22 = Dic5⋊7SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).255C2^2 | 320,415 |
(C4×Dic5).256C22 = Dic5⋊4Q16 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).256C2^2 | 320,417 |
(C4×Dic5).257C22 = Dic5.3Q16 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).257C2^2 | 320,419 |
(C4×Dic5).258C22 = Q8⋊Dic5⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).258C2^2 | 320,427 |
(C4×Dic5).259C22 = Dic5⋊8SD16 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).259C2^2 | 320,479 |
(C4×Dic5).260C22 = C40⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).260C2^2 | 320,482 |
(C4×Dic5).261C22 = C8.8Dic10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).261C2^2 | 320,485 |
(C4×Dic5).262C22 = D40⋊12C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).262C2^2 | 320,499 |
(C4×Dic5).263C22 = Dic5⋊5Q16 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).263C2^2 | 320,500 |
(C4×Dic5).264C22 = C40⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).264C2^2 | 320,501 |
(C4×Dic5).265C22 = C8.6Dic10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).265C2^2 | 320,505 |
(C4×Dic5).266C22 = D40⋊13C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).266C2^2 | 320,522 |
(C4×Dic5).267C22 = C40.93D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).267C2^2 | 320,771 |
(C4×Dic5).268C22 = D8×Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).268C2^2 | 320,776 |
(C4×Dic5).269C22 = C40⋊5D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).269C2^2 | 320,778 |
(C4×Dic5).270C22 = C40.22D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).270C2^2 | 320,782 |
(C4×Dic5).271C22 = SD16×Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).271C2^2 | 320,788 |
(C4×Dic5).272C22 = C40.43D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).272C2^2 | 320,795 |
(C4×Dic5).273C22 = C40⋊15D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).273C2^2 | 320,802 |
(C4×Dic5).274C22 = C40.26D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).274C2^2 | 320,808 |
(C4×Dic5).275C22 = Q16×Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).275C2^2 | 320,810 |
(C4×Dic5).276C22 = C40.28D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).276C2^2 | 320,818 |
(C4×Dic5).277C22 = D8⋊5Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).277C2^2 | 320,823 |
(C4×Dic5).278C22 = C2×C20⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).278C2^2 | 320,1169 |
(C4×Dic5).279C22 = C2×C4.Dic10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).279C2^2 | 320,1171 |
(C4×Dic5).280C22 = C42.88D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).280C2^2 | 320,1189 |
(C4×Dic5).281C22 = C42.188D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).281C2^2 | 320,1194 |
(C4×Dic5).282C22 = C42.228D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).282C2^2 | 320,1220 |
(C4×Dic5).283C22 = C4×Q8⋊2D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).283C2^2 | 320,1245 |
(C4×Dic5).284C22 = C42.232D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).284C2^2 | 320,1250 |
(C4×Dic5).285C22 = C20⋊(C4○D4) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).285C2^2 | 320,1268 |
(C4×Dic5).286C22 = (Q8×Dic5)⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).286C2^2 | 320,1294 |
(C4×Dic5).287C22 = C42.238D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).287C2^2 | 320,1388 |
(C4×Dic5).288C22 = D5×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).288C2^2 | 320,1395 |
(C4×Dic5).289C22 = C42.240D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).289C2^2 | 320,1397 |
(C4×Dic5).290C22 = C2×Dic5⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).290C2^2 | 320,1482 |
(C4×Dic5).291C22 = C2×Q8×Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).291C2^2 | 320,1483 |
(C4×Dic5).292C22 = (C2×C20)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).292C2^2 | 320,1504 |
(C4×Dic5).293C22 = C8×Dic10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).293C2^2 | 320,305 |
(C4×Dic5).294C22 = C42.282D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).294C2^2 | 320,312 |
(C4×Dic5).295C22 = C4×C8⋊D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).295C2^2 | 320,314 |
(C4×Dic5).296C22 = D10.5C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).296C2^2 | 320,316 |
(C4×Dic5).297C22 = D5×C8⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).297C2^2 | 320,331 |
(C4×Dic5).298C22 = C42.182D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).298C2^2 | 320,332 |
(C4×Dic5).299C22 = D10.7C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).299C2^2 | 320,335 |
(C4×Dic5).300C22 = Dic5.9M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).300C2^2 | 320,346 |
(C4×Dic5).301C22 = C40⋊8C4⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).301C2^2 | 320,347 |
(C4×Dic5).302C22 = C5⋊5(C8×D4) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).302C2^2 | 320,352 |
(C4×Dic5).303C22 = Dic5⋊2M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).303C2^2 | 320,356 |
(C4×Dic5).304C22 = Dic5.5M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).304C2^2 | 320,455 |
(C4×Dic5).305C22 = Dic10⋊5C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).305C2^2 | 320,457 |
(C4×Dic5).306C22 = D5×C4⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).306C2^2 | 320,459 |
(C4×Dic5).307C22 = C42.202D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).307C2^2 | 320,462 |
(C4×Dic5).308C22 = C20⋊5M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).308C2^2 | 320,464 |
(C4×Dic5).309C22 = C42.31D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).309C2^2 | 320,467 |
(C4×Dic5).310C22 = C2×C20.8Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).310C2^2 | 320,726 |
(C4×Dic5).311C22 = C2×C40⋊8C4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).311C2^2 | 320,727 |
(C4×Dic5).312C22 = C20.42C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).312C2^2 | 320,728 |
(C4×Dic5).313C22 = C8×C5⋊D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).313C2^2 | 320,736 |
(C4×Dic5).314C22 = M4(2)×Dic5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).314C2^2 | 320,744 |
(C4×Dic5).315C22 = Dic5⋊5M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).315C2^2 | 320,745 |
(C4×Dic5).316C22 = C20.37C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).316C2^2 | 320,749 |
(C4×Dic5).317C22 = C40⋊18D4 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).317C2^2 | 320,755 |
(C4×Dic5).318C22 = C42.5F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).318C2^2 | 320,1014 |
(C4×Dic5).319C22 = C4×C4.F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).319C2^2 | 320,1015 |
(C4×Dic5).320C22 = C42.11F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).320C2^2 | 320,1017 |
(C4×Dic5).321C22 = C42.14F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).321C2^2 | 320,1020 |
(C4×Dic5).322C22 = C42.15F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).322C2^2 | 320,1021 |
(C4×Dic5).323C22 = C42.7F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).323C2^2 | 320,1022 |
(C4×Dic5).324C22 = C2×C10.C42 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).324C2^2 | 320,1087 |
(C4×Dic5).325C22 = C4×C22.F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).325C2^2 | 320,1088 |
(C4×Dic5).326C22 = C2×Dic5⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).326C2^2 | 320,1090 |
(C4×Dic5).327C22 = C20.34M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).327C2^2 | 320,1092 |
(C4×Dic5).328C22 = Dic5.13M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).328C2^2 | 320,1095 |
(C4×Dic5).329C22 = C2×C4×Dic10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).329C2^2 | 320,1139 |
(C4×Dic5).330C22 = C4×C4○D20 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).330C2^2 | 320,1146 |
(C4×Dic5).331C22 = C2×Dic5⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).331C2^2 | 320,1168 |
(C4×Dic5).332C22 = C2×Dic5.Q8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).332C2^2 | 320,1170 |
(C4×Dic5).333C22 = C4×D4⋊2D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).333C2^2 | 320,1208 |
(C4×Dic5).334C22 = C42.102D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).334C2^2 | 320,1210 |
(C4×Dic5).335C22 = C42.229D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).335C2^2 | 320,1229 |
(C4×Dic5).336C22 = C4×Q8×D5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).336C2^2 | 320,1243 |
(C4×Dic5).337C22 = C42.131D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).337C2^2 | 320,1252 |
(C4×Dic5).338C22 = C42.233D10 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).338C2^2 | 320,1340 |
(C4×Dic5).339C22 = D5×C42.C2 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).339C2^2 | 320,1359 |
(C4×Dic5).340C22 = C40⋊2C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).340C2^2 | 320,219 |
(C4×Dic5).341C22 = C40⋊1C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).341C2^2 | 320,220 |
(C4×Dic5).342C22 = C20.26M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).342C2^2 | 320,221 |
(C4×Dic5).343C22 = Dic5.13D8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).343C2^2 | 320,222 |
(C4×Dic5).344C22 = C42.12F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).344C2^2 | 320,1018 |
(C4×Dic5).345C22 = C20⋊3M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).345C2^2 | 320,1019 |
(C4×Dic5).346C22 = C2×C20⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).346C2^2 | 320,1085 |
(C4×Dic5).347C22 = Dic5.12M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).347C2^2 | 320,1086 |
(C4×Dic5).348C22 = C20⋊8M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).348C2^2 | 320,1096 |
(C4×Dic5).349C22 = C20.30M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).349C2^2 | 320,1097 |
(C4×Dic5).350C22 = C8×C5⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).350C2^2 | 320,216 |
(C4×Dic5).351C22 = C40⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).351C2^2 | 320,217 |
(C4×Dic5).352C22 = C20.31M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).352C2^2 | 320,218 |
(C4×Dic5).353C22 = C4×D5⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).353C2^2 | 320,1013 |
(C4×Dic5).354C22 = C42.6F5 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).354C2^2 | 320,1016 |
(C4×Dic5).355C22 = C2×C4×C5⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).355C2^2 | 320,1084 |
(C4×Dic5).356C22 = D5×C4×C8 | φ: trivial image | 160 | | (C4xDic5).356C2^2 | 320,311 |
(C4×Dic5).357C22 = D10.6C42 | φ: trivial image | 160 | | (C4xDic5).357C2^2 | 320,334 |
(C4×Dic5).358C22 = Dic5.14M4(2) | φ: trivial image | 160 | | (C4xDic5).358C2^2 | 320,345 |
(C4×Dic5).359C22 = C42.200D10 | φ: trivial image | 160 | | (C4xDic5).359C2^2 | 320,460 |
(C4×Dic5).360C22 = C2×C8×Dic5 | φ: trivial image | 320 | | (C4xDic5).360C2^2 | 320,725 |
(C4×Dic5).361C22 = C4○D4×Dic5 | φ: trivial image | 160 | | (C4xDic5).361C2^2 | 320,1498 |